

	
Made by AppCoda

	
Contact us / Support

	
Tweet this book

	
	

Preface

	

1. Introduction to SwiftUI

	

2. Getting Started with SwiftUI and Working with Text

	

3. Working with Images

	

4. Layout User Interfaces with Stacks

	

5. Understanding ScrollView and Building a Carousel UI

	

6. Working with SwiftUI Buttons and Gradient

	

7. Understanding State and Binding

	

8. Implementing Path and Shape for Line Drawing and Pie Charts

	

9. Basic Animations and Transitions

	

10. Understanding Dynamic List, ForEach and Identifiable

	

11. Working with Navigation UI and Navigation Bar Customization

	

12. Playing with Modal Views, Floating Buttons and Alerts

	

13. Building a Form with Picker, Toggle and Stepper

	

14. Data Sharing with Combine and Environment Objects

	

15. Building a Registration Form with Combine and View Model

	

16. Working with Swipe-to-Delete, Context Menu and Action Sheets

	

17. Using Gestures

	

18. Displaying an Expandable Bottom Sheet Using Presentation Detents

	

19. Creating a Tinder-like UI with Gestures and Animations

	

20. Creating an Apple Wallet like Animation and View Transition

	

21. Working with JSON, Slider and Data Filtering

	

22. Building a ToDo app with SwiftData

	

23. Integrating UIKit with SwiftUI Using UIViewRepresentable

	

24. Creating a Search Bar View and Working with Custom Binding

	

25. Putting Everything Together to Build a Real World App

	

26. Creating an App Store like Animated View Transition

	

27. Building an Image Carousel

	

28. Building an Expandable List View Using OutlineGroup

	

29. Building Grid Layout Using LazyVGrid and LazyHGrid

	

30. Creating an Animated Activity Ring with Shape and Animatable

	

31. Working with AnimatableModifier and LibraryContentProvider

	

32. Working with TextEditor to Create Multiline Text Fields

	

33. Using matchedGeometryEffect to Create View Animations

	

34. ScrollViewReader and Grid Animation

	

35. Working with Tab View and Tab Bar Customization

	

36. Using AsyncImage in SwiftUI for Loading Images Asynchronously

	

37. Implementing Search Bar Using Searchable

	

38. Creating Bar Charts and Line Charts with the Charts Framework

	

39. Capturing Text within Image Using Live Text APIs

	

40. How to Use ShareLink for Sharing Data Like Text and Photos

	

41. Using ImageRenderer to Convert SwiftUI Views into Images

	

42. Creating PDF Documents Using ImageRenderer

	

43. Using Gauge to Display Progress and Create a Speedometer

	

44. Creating Grid Layout Using Grid APIs

	

45. Switching Layout with AnyLayout

	

46. Working with Maps and Annotations

	

47. Working with Preview Macro

	

48. Building Pie Charts and Donut Charts

	

49. Detecting scroll positions in ScrollView with SwiftUI

	

50. Animating Scroll View Using SwiftUI

	

51. Using UnevenRoundedRectangle to Round Specific Corners

	

52. Getting Started with SwiftData

	

53. How to Embed Photo Pickers in iOS Apps

	

54. Using PhaseAnimator to Create Dynamic Multi-Step Animations

	

55. Creating Advanced Animations with KeyframeAnimator

	

56. Using TipKit to Display Tooltips

	
	

Published with GitBook

Mastering SwiftUI Book for iOS 17 and Xcode 15 - Sample

Chapter 42
Creating PDF Documents Using ImageRenderer

Earlier, we showed you how to use ImageRenderer to capture a SwiftUI view and save it as an image. This new class, introduced in iOS 16, can also allow you to convert a view into a PDF document.

In this chapter, we will build on top of the previous demo and add the Save to PDF function.

Revisit the Demo App

If you haven't read the previous chapter, I suggest you to check it out first. It already covered the basics of ImageRenderer and explained the implementation of the demo app.

Figure 1. App Demo
To follow this chapter, you can first download the starter project from https://www.appcoda.com/resources/swiftui4/SwiftUIImageRendererPDFStarter.zip.

I have made some modifications to the demo app by adding a heading and a caption for the line chart. You can refer to the code of the ChartView struct below:

struct ChartView: View {
 let chartData = [(city: "Hong Kong", data: hkWeatherData),
 (city: "London", data: londonWeatherData),
 (city: "Taipei", data: taipeiWeatherData)
]

 var body: some View {
 VStack {
 Text("Building Line Charts in SwiftUI")
 .font(.system(size: 40, weight: .heavy, design: .rounded))
 .multilineTextAlignment(.center)
 .padding()

 Chart {
 ForEach(chartData, id: \.city) { series in
 ForEach(series.data) { item in
 LineMark(
 x: .value("Month", item.date),
 y: .value("Temp", item.temperature)
)
 }
 .foregroundStyle(by: .value("City", series.city))
 .symbol(by: .value("City", series.city))
 }
 }
 .chartXAxis {
 AxisMarks(values: .stride(by: .month)) { value in
 AxisGridLine()
 AxisValueLabel(format: .dateTime.month(.defaultDigits))

 }

 }
 .chartPlotStyle { plotArea in
 plotArea
 .background(.blue.opacity(0.1))
 }
 .chartYAxis {
 AxisMarks(position: .leading)
 }
 .frame(width: 350, height: 300)

 .padding(.horizontal)

 Text("Figure 1. Line Chart")
 .padding()

 }
 }
}

The demo app now also comes with a PDF button for saving the chart view in a PDF document.

Saving the Chart View as a PDF Document Using ImageRenderer

What we are going to do is create a PDF document for the ChartView using ImageRenderer. While it only takes a couple of lines of code to convert a SwiftUI view into an image, we need a little more work for PDF rendering.

For image conversion, you can access the uiImage property to get the rendered image. To draw the chart into a PDF, we will use the render method of ImageRenderer. Here is what we are going to implement:

	Look for the document directory and prepare the rendered path for the PDF file (e.g. linechart.pdf).
	Prepare an instance of CGContext for drawing.
	Call the render method of the renderer to render the PDF document.

For the implementation, we create a new method named exportPDF in ContentView. Below is the code of the method :

To access the full content and the complete source code, please get your copy at https://www.appcoda.com/swiftui.

The first two lines of the code retrieves the document directory of the user and set up the file path of the PDF file (i.e. line chart.pdf). We then create the instance of CGContext. The mediaBox parameter is set to nil. In this case, Core Graphics uses a default page size of 8.5 by 11 inches (612 by 792 points).

The renderer closure receives two parameters: the current size of the view, and a function that renders the view to the CGContext. To begin the PDF page, we call the context's beginPDFPage method. The renderer method draws the chart view. And remember that you need to close the PDF document to complete the whole operation.

To call this exportPDF method, we update a PDF button like this:

Button {
 exportPDF()
} label: {
 Label("PDF", systemImage: "doc.plaintext")
}
.buttonStyle(.borderedProminent)

You can run the app in a simulator to have a test. After you tap the PDF button, you should see the following message in the console:

Saving PDF to /Users/simon/Library/Developer/CoreSimulator/Devices/CA9B849B-36C5-4608-9D72-B04C468DA87E/data/Containers/Data/Application/04415B8A-7485-48F0-8DA2-59B97C2B529D/Documents/linechart.pdf

If you open the file in Finder (choose Go > Go to Folder...), you should see a PDF document like below.

Figure 2. The rendered PDF document
To adjust the position of the drawing, you can insert this line of code before calling renderer:

pdfContext.translateBy(x: 0, y: 200)

This will move the chart to the upper part of the document.

Figure 3. Adjusting the chart position
Make the PDF file available to the Files app

You may wonder why the PDF file can't be found in the Files app. Before you can make the file available to the built-in Files app, you have to change a couple of the settings in Info.plist. Switch to Info.plist and add the following keys:

To access the full content and the complete source code, please get your copy at https://www.appcoda.com/swiftui.

 results matching ""

No results matching ""

